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Abstract: We demonstrate lensless imaging of three-dimensional phantoms of fluorescent
nanodiamonds in solution. Magnetofluorescence imaging is employed, which relies on a
dependence of the fluorescence yield on the magnetic field, and pervading the object with an
inhomogeneous magnetic field. This field provides a field-free field line, which is rastered
through the object. A 3D image of the object is obtained by imaging a set of 2D slices. Each
2D slice image is computed from a set of 1D projections, obtained under different projection
directions, using a backprojection algorithm. Reconstructed images containing up to 36× 36× 8
voxels are obtained. A spatial resolution better than 2mm is achieved in three dimensions. The
approach has the potential for scalability.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Imaging the interior of the human body is a tremendously important technique in medical physics.
A variety of approaches exist, using X-rays, photons, radio waves, ultrasound, and positrons.
Some of these approaches even allow chemical or biofunctional imaging. Detailed chemical
imaging is possible in laser microscopy, using fluorescent markers. Such imaging can provide
3D information, with sub-micrometer spatial resolution, but is applicable to small volumes only.
In this paper we pursue the development of a technique [1–3] that may in the future lead to

biochemical 3D imaging in the animal or human body, in vivo. The method is based on the
combination of fluorescent markers distributed within the body, having magnetic-field-dependent
fluorescence efficiency, and an inhomogeneous magnetic field pervading the body. The total
fluorescence emitted by all markers varies when the field distribution within the body is modified.
By implementing an appropriate set of spatial translations of the field as a whole, data can be
collected allowing to reconstruct the 3D distribution of markers within the body. This technique
represents one variant of “gradient imaging”, the imaging class to which also magnetic resonance
imaging (MRI) belongs. The method has a potential spatial resolution at the sub-mm level.

1.1. Fluorescent nanodiamonds

In this work we employ fluorescent nanodiamonds (FND) as markers. FNDs are nanoscale
diamonds containing nitrogen vacancy centers (NVCs), which emit fluorescence when excited
with light in the spectral range 460 − 640 nm [4,5]. When FNDs are excited e.g. by 532 nm
laser radiation, the emission is in the range 630 − 800 nm [6]. These wavelengths fall into the
near-infrared tissue transmission window, in which light has the maximum penetration depth
in biological tissue. FNDs appear suitable for in vivo biomedical imaging and for clinical use
[5,7–12]. Their high photostability is an advantage compared to typical biomolecules and many
common fluorescent markers. The biocompatibility of FNDs and nanodiamonds in general was
tested with different animal models and cells, leading to the conclusion that a concentration
smaller than 1mg/ml is generally not toxic [11,12]. The toxicity of higher concentrations depends
on the organism model and on the diamond surface purity. FNDs can be produced with diameters
as small as 10 nm, which allows them to diffuse into cells, thus enabling their use as markers for
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intracellular imaging. The FND surface can be chemically functionalized so that they can bind
to particular receptors, without affecting their fluorescence properties. Thus, FNDs can target
particular biological structures in vivo. The application of FNDs for drug delivery [13,14] as
well as for cell labeling in general has been studied [15,16]. FNDs can furthermore be used to
enhance existing imaging techniques, such as MRI [17] or fluorescence microscopy [18–21].

1.2. Imaging with FNDs

Due to the energy level structure of the NVCs, the fluorescence level of continuously optically
irradiated FNDs is a function of the applied magnetic field. This is termed magnetofluorescence
or magnetic field effect (MFE) [22,23]. In addition, FNDs allow for optically detected electron
spin resonance (ODESR). Here, under laser-induced fluorescence, the additional irradiation with
microwave radiation of specific frequency leads to a change of fluorescence level [24]. This
specific frequency is also a function of the applied magnetic field. Both MFE and ODESR open
up the possibility of imaging.

Traditional (lens-based) imaging of FNDs has been described e.g. in [20]. Here, the image is
obtained as the difference of images of the fluorescence recorded in zero magnetic field and in a
finite, homogeneous magnetic field. Alternatively, the difference of images with and without
microwave irradiation is produced [19].
Non-traditional imaging, i.e. without the use of lenses, is also possible with FNDs (or other

systems with a magnetic-field dependent fluorescence) [1–3]. Basically, the approach uses an
inhomogeneous magnetic field with a field-free line, i.e. a line on which the magnetic flux is zero.
The use of a field configuration with a field-free point is in principle also possible, but appears
less favorable for 3D imaging due to its lower signal. A magnetic quadrupole (QP) field is the
natural choice for implementing a field-free line. In such a field, the magnetic flux B is directly
proportional to the (orthogonal) distance ρ from the field-free line, |B| = gρ, with the gradient
denoted by g. The key effect of the imaging method relies on the ability to obtain a signal from
the FNDs close to the field-free line that differs from the signal of more distant FNDs. The
field-free line is scanned through the body to be imaged, either by shifting the field-free line or
by shifting the body. Thereby, data is collected that allows reconstructing the spatial distribution
of FNDs. The spatial resolution is inversely proportional to g. A challenge in applying such
imaging to large samples is that in order achieve a particular gradient g, the maximum flux value,
reached at the edges of the body, will need to be correspondingly large.
The two approaches relevant to FNDs with NVCs are now briefly described. It should be

pointed out that both approaches suppress the influence of autofluorescence of the body under
study, since autofluorescence is usually neither influenced by an applied microwave radiation nor
by a magnetic field.

1.2.1. ODESR imaging

The effect used for this imaging technique is the reduction of the microwave-induced fluorescence
change ε(|B|) in absence of a magnetic field. Specifically, ODESR in zero field appears as a
fluorescence change by ε(B = 0) = 0.1% when microwave radiation at appropriate frequency is
applied. ε(|B|) decreases by a factor 2 or more for a field strength |B| ≥ δB = 5G [3]. This is the
effect used in gradient imaging.
Hegyi and Yablonovitch [2,3] demonstrated gradient imaging based on ODESR. Their

imaging system combined a permanent magnet QP field, a solenoidal dipole (i.e. spatially
homogeneous) field and microwave irradiation at 2.87GHz. The signal is obtained as the
difference of fluorescence when the radiation is on and off. The QP field contained a field-free
line with a gradient g ' 10G/mm. The combination of this moderate gradient strength and
the strong dependence of the fluorescence decrease with magnetic field led to a resolution
δρ = 2δB/g ' 0.8mm. The field-free line (along the z axis) was scanned by a combination
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of mechanical and electrical means: by controlling the solenoidal current, the field-free line
could be shifted in the y direction, while scanning in x direction was realized by a translation
stage moving the object. Imaging also the third spatial dimension (z) was not implemented. The
phantoms used were two-dimensional patterns of 2mm × 2mm pieces of FND-coated sticky
tape, each containing 15 µg of FNDs. For demonstration purposes, these phantoms were also
imaged inside a 1 cm × 1 cm × 2 cm piece of chicken breast.

1.2.2. Magnetofluorescence imaging

In the FND ODESR technique described above, the fluorescence change is significant for zero
and small field strength. In contrast, the change due to MFE can be significant for field strengths
between zero up to a moderate magnitude (few 100G). Since microwave radiation is absent,
and turning the gradient field on and off does not appear to be practical, a modified approach is
necessary. Yang and Cohen [1] introduced magnetofluorescence imaging (MFI): here a signal is
generated by recording the difference in fluorescence level when the field-free line is slightly
displaced in a direction orthogonal to its orientation. This difference signal arises mostly from
the fluorescent probes located close to the field-free line.
Yang and Cohen employed a bimolecular system consisting of diamethylanile and pyrene

as fluorescent probe. The magnitude of the MFE of this system is dependent on the solvent.
This is a disadvantage compared to FNDs, which do not exhibit such an effect, because the
NVCs responsible for the fluorescence are mostly located in the bulk. The bimolecular system
in the solvent exhibited a decrease of 10% in fluorescence level for field strengths |B| > 90G.
A QP field, generated by four permanent magnets, was employed. Its gradient was substantial,
g ' 260G/mm, providing a theoretical resolution of δρ = 0.9mm. Two coils around two opposite
magnets allowed spatial shifting and dithering of the field-free line. The samples consisted of
1mm thick glass pieces of different shapes and did not contain fluorescent particles. For imaging,
they were placed into the bimolecular solution inside a container. 2D images were obtained
by dithering the field-free line, lock-in detection and scanning the field-free line through the
sample with an x-y translation stage. Images of the container with and without the sample were
compared to find the samples’ boundaries. The technique did not allow to image the samples
directly. The authors described the resulting images as “shadow” images.
Modulation MFI
In the present work, we present a 3D tomographic magnetofluorescence imaging setup for FNDs
in solution, without the use of microwave irradiation. Our approach, which may be called more
specifically “modulation MFI”, is a variant of Yang and Cohen’s MFI employing modulation of
the field-free line. The tomography is implemented by acquiring approximate Radon projections

Fig. 1. Variation of fluorescence efficiency of FNDs in solution, as a function of magnetic
flux strength |B|.
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of slices of the sample. A 3D image is obtained from a set of slices. To our knowledge, this
non-traditional optical imaging modality has not been shown before, nor has non-traditional 3D
imaging of fluorescent markers in macroscopic samples been achieved before.

2. Fundamentals of magnetofluorescence imaging

2.1. Magnetofluorescence effect

The key effect at the base of this work, theMFE of NVC, is well known [22,23,25]. To characterize
it, we placed a 4mmdia. × 2mm cylinder of FND solution on the end face of an electromagnet
producing an adjustable magnetic flux B. The solution was irradiated with 100mW laser light
at 532 nm. Fluorescence was collected by a lens and focused on to a solid-state photodetector,
yielding a signal S(B). B was measured with a magnetic sensor. Figure 1 shows the fractional
fluorescence change MFE(|B|) = S(|B|)/S(B = 0) − 1 vs. |B|. An approximately linear decrease
is observed at small to moderate strengths, leveling off beyond 400G. The half width at half
maximum of the response is Bc = 200G. The quantity Bc plays a similar role to δB above. We
noticed a variation of the details of the MFE function on laser intensity. The fluorescence of
FNDs in solution is not expected to show any dependence on the direction of the applied magnetic
field.
For imaging of FNDs using a modulation approach or a difference approach, it is a suitable

choice to use zero flux strength as the reference. For gradient imaging, the spatial resolution
is given by δρ/2 ' Bc/g. In the present work, the gradient at the QP’s center has a strength of
g ' 150G/mm; therefore we expect a spatial resolution of δρ ' 2.5mm.

2.2. Imaging

We consider a three-dimensional distribution of FNDs described by the number density function
n(x, y, z). The imaging task is to obtain this function as faithfully as possible. Figure 2 shows a
simplified schematic representation of the measurement procedure. 3D imaging is achieved by
combining a set of 2D images of different slices, taken at the positions z1, z2,. . . , see Fig. 2(a-e).

2.2.1. 2D imaging

2D imaging of the density means obtaining approximately the density in a particular plane,
n(x, y, z = zj). In practice, one seeks to obtain the spatially averaged quantity

ñ(x, y, zj) =
∫

n(x′, y′, z′)f (x, y, zj; x′, y′, z′)dx′dy′dz′

with the “smearing-out” function f , peaking at (x = x′, y = y′, z = z′). We may call this a “slice
image”. Experimentally, one selects by appropriate means the plane z = zj, performs a set of
projection measurements therein and then computes a reconstructed quantity that approximates ñ.
Indeed, each projection measurement is an approximation of the Radon transform (or projection)
of the function n(x, y, z = zj). The Radon transform [26–29] is well-known in biomedical imaging,
and is used in computer tomography. In the hypothetical ideal configuration, the Radon transform
of a 2D slice is a set of line integrals of n in the x-y plane, see Fig. 2(b). In an experimental setting,
each line integral is also spatially averaged in the two directions transverse to the projection
direction. A set of projections is taken at evenly spaced angles θi from 0◦ to 180◦ − ∆θ in steps
∆θ = 180◦/imax. Such a set is shown in a compact representation in Fig. 2(c).

There are different mathematical methods to reconstruct the function ñ(x, y, zj) (the 2D image)
from projections; several available computer codes provide functions for image reconstruction.
Here, we use Wolfram Mathematica: its function InverseRadon uses a filtered backprojection
method [30]. Figure 2(d) shows the reconstructed 2D slice image. The reconstruction algorithm



Research Article Vol. 11, No. 2 / 1 February 2020 / Biomedical Optics Express 537

Fig. 2. Principle of 3D imaging based on projections. For clarity, lateral modulation of the
field-free line is not shown. The object is located in the coordinate system (x, y, z). (a) A
3D measurement is performed by imaging one slice at a time. A slice is a region centered
on a plane zj and having a small effective thickness. (b) A slice is imaged by performing
projection measurements. Each projection is along a direction ®ξ perpendicular to a chosen
angle θi. (c) The set of projections from 0◦ to 180◦ − ∆θ, with the signals-coded. (d) The
reconstructed slice (2D image), obtained by backprojection. (e) Projection measurements
are repeated for several slices. Reconstructed slices are stacked to form a 3D image.

yields slice images whose lateral extension does not equal the length of the projection skmax − s1.
Instead, their diagonals are approximately equal to the projection’s length.

The main operation for obtaining a projection measurement consists of orienting the field-free
line ®ξ perpendicular to a preselected direction ®s. The orientation of ®s is given by θi. Different
angles θi are chosen by mechanical rotation of either the object or the magnetic field. During a
projection measurement, the field-free line is displaced along ®s, maintaining its orientation θi,
see Fig. 2(b). This displacement is done mechanically in the present work. At each position sk
along ®s, one projection data point is taken. Physically, this is a fluorescence level value. The
key aspect is that the FNDs located close to the field-free line will contribute to the fluorescence
with an amount proportional to their number, and with a slightly higher efficiency due to the
magnetofluorescence effect described above. If scattering and absorption effects on both the
excitation radiation and on the fluorescence radiation were absent, (thus, in particular, leading to
a homogeneous excitation illumination) the increased contribution would be proportional to the
line integral of n(x, y, zj) along the field-free line, averaged over a cylindrical volume around the
field-free line with a characteristic, small radial scale.
To obtain a theoretical expression for projection MFI, we approximate the total fluorescence

signal emitted into all directions from a point (x, y, z) within the object embedded in a magnetic
field B as

T(x, y, z) = ζ t0(x, y, z)n(x, y, z)MFE(|B(x, y, z)|) .

Here, ζ is the fluorescence efficiency, t0 is the local illumination level. The total signal detected
by a hypothetical detector external to the object and covering the whole solid angle, assuming
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absence of absorption and scattering of the fluorescence light, is the integral over the whole
object,

S(0) =
∭

T(x, y, z)dxdydz .

Consider now a QP field with the field-free ®ξ line lying in the plane zj, oriented at an angle θ with
respect to the x axis and having the coordinates (xk = sk cos θ + ξ sin θ, yk = −sk sin θ + ξ cos θ).
Here, sk is the smallest distance of the field-free line from the origin x = y = 0, and ξ is the
coordinate along it. The QP field strength is given by

|B(x, y, z)| = g
√
(s − sk)2 + (z − zj)2 =: |B(s; sk, z; zj)| . (1)

B also depends parametrically on θ, but this dependence is omitted for clarity. For a fixed θ,
we can describe the optical signal using the coordinate system (s, ξ, z) , instead of (x, y, z). The
transformation is given by

x = s cos θ + ξ sin θ ,

y = −s sin θ + ξ cos θ ,

or equivalently s = x cos θ − y sin θ, ξ = x sin θ + y cos θ. The signal contribution of the point
(x, y, z) is then

T(θ; s, ξ, z) = ζ t0(θ; s, ξ, z)n(θ; s, ξ, z)MFE
(
|B(s; sk, z; zj)|

)
. (2)

The total signal is given by

S(0)(θ; sk, zj) =
∭

T(θ; s, ξ, z)dsdξdz . (3)

The integration is over all space, but can be approximated by the line integral

S(0)(θ; sk, zj) =
∫ ∞

−∞

N(θ; sk, ξ, zj)dξ

of an averaged emitter density,

N(θ; sk, ξ, zj) =
∬

ζ t0(θ; s, ξ, z)n(θ; s, ξ, z)MFE
(
|B(s; sk, z; zj)|

)
dsdz . (4)

Clearly, the factor MFE describes the spatial averaging of the actual emitter density n. A spatially
inhomogeneous illumination t0 will lead to an image distortion. Only in the ideal case that
the illumination t0 is homogeneous and MFE is a delta function of its argument, would N be
proportional to the emitter density n(θ; sk, ξ, zj) = n(xk, yk, zj), and the total signal would be a
projection along the field-free line ®ξ,

S(0, hom)(θ; sk, zj) = ζ t0
∫

n(sk cos θ + ξ sin θ,−sk sin θ + ξ cos θ, zj)dξ .

This function of sk (θ, zj being parameters) is a Radon transform of the object, the FND density
distribution n. Such Radon transforms have to be acquired for a set of angles {θi} which are input
to a backprojection algorithm that outputs an approximation to n(x, y, zj). The accuracy increases
with the number of angles, imax, and of sk values, kmax.

In experimental practice, the projection measurement and backprojection will provide the
quantity N, Eq. 4, which corresponds to the quantity ñ introduced above. It will be affected by
additional experimental errors and noise, in addition to the limitations described above.
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One important addition to MFI is our variant denoted by modulation MFI of the technique for
signal extraction introduced by Yang and Cohen. The position of the field-free line is modulated
laterally (in direction of ®s or ®z, perpendicular to the line itself). The ensuing fluorescence
modulation amplitude is taken as the signal. Figure 3 shows this principle. The fluorescence
modulation arises only from the FNDs close to the field-free line. The fluorescence of the
remainder of the object is not modulated (because of the characteristics of the function MFE),
and is not recorded in this measurement. There are two modulation options: lateral modulation
in the direction ®s or in the direction ®z. In the present work, the modulation amplitudes δzmod and
δsmod (Fig. 3) are significantly smaller than the nominal resolution δρ. Then, one data point is
approximately given by the derivative

S(0)η (θ; sk, zj) := ∂ηS(0)(θ; sk, zj) =
∫

Nη(θ; sk, ξ, zj)dξ , (5)

where η = zj or sk. In the following, we use the notation Xη for ∂ηX. Since neither t0 nor n
depend on η, we can express the integrand as

Nη(θ; sk, ξ, zj) =
∬

ζ t0(θ; s, ξ, z)n(θ; s, ξ, z)MFEη

(
|B(s; sk, z; zj)|

)
dsdz .

The partial derivative of MFE with respect to η, i.e. zj or sk, can be replaced by the negative of
the derivative with respect to z or s, respectively. We denote this variable by η′. Integration by
parts and taking into account that n(θ; s = ±∞, ξ, z) = 0 leads to

Nη(θ; sk, ξ, zj) =
∬

ζ ∂η′ (t0(θ; s, ξ, z)n(θ; s, ξ, z))MFE
(
g
√
(s − sk)2 + (z − zj)2

)
dsdz . (6)

This expression is the integrand of S(0)η . Thus, modulation MFI is based on projections of the
spatially averaged in-plane (η′ = s) or out-of-plane (η′ = z) derivative of the “illuminated FND
density” t0n. Provided that projections are taken for a sufficiently large number of angles θi and a
dense set of planes {zj} is chosen, the spatial resolution is determined to a large extent by the
magnetic gradient g and the derivative of the function MFE, i.e. by δρ.

Fig. 3. Modulation of the field-free line position by a sinusoidal coil current. The blue
bands show the extreme positions of the line during a modulation period. (a) Modulation
along the z direction. The fluorescence modulation signal is particularly large if the line
moves in and out of the object. (b) s-modulation follows the same principle as z-modulation.
A large signal is obtained when the field-free line moves across an edge of the object in the
x-y plane.
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2.2.2. 3D imaging

A set of slice images taken at different zj are combined to form a 3D image. However, since
modulation MFI only captures the derivative of the illuminated FND density, the combination of
the slice images yields a 3D image of the illuminated FND density derivative. In the particular
case of a homogeneous object (n = const.), z-modulation would result in signals only from the
“top” and “bottom” edges of the object, while s-modulation would show the “radial” edges.

Often, one is interested in the FND density itself. For this aim, the projection data can be
numerically integrated along the direction of field-free line modulation, and it is on this new data
that the projection reconstruction is performed. (The opposite sequence, first reconstruction and
then integration, would also work.) Integration renders the homogeneous sectors of an object in
the image visible.
The integration is implemented using the trapezoidal rule. In the case of z-modulation,

P(0)z (θ, sk, zj) =
j−1∑
m=1

S(0)z (θ; sk, zm) + S
(0)
z (θ; sk, zm+1)

2
∆z , (7)

where ∆z = zm+1−zm is the distance between the planes. In the case of s-modulation an analogous
summation is performed.

3. Simulation

In order to gain insight over the experimental implementation of projection measurements and
reconstructions with MFI and how the magnetic field gradient in combination with the MFE
influences the resolution, we simulated the imaging of 2D objects, neglecting scattering and
absorption, and assuming homogeneous illumination, t0(x, y) = t0.
Since we are considering a 2D geometry, the magnetic field B(s) (Eq. (1)) can be taken as a

linear function. The MFE (Fig. 1) is approximated by a linear function up to B = 450G. This
leads to a triangular function Λ for the MFE with a base width of 2b = 6mm, see Fig. 4,

MFEsim(s − sk) = Λ ((s − sk)/b) = Λ ((x cos θ − y sin θ − sk)/b) =: MFEsim(θ; sk, x, y) .

The scanning of the field-free line along the direction ®s is embodied in this expression.
The object is assumed to be a set of circular “patches”, centered at the positions (x0,l, y0,l),

having radii rl and constant FND densities n0,l,

nl(x, y) = n0,l circle(x − x0,l, y − y0,l, rl) .

A projection value is computed as

S(0)sim(θ; sk) =
∬

ζ t0

(∑
l
nl(x, y)

)
MFEsim(θ; sk, x, y)dxdy .

Fig. 4. Functions used for 2D projection simulation.
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Fig. 5. Simulation of imaging without modulation. (a) Projections S(0)sim. (b) Backprojection.
Solid line circles: the original objects. Projection parameters: 14 projection angles
(0◦ − 162◦), kmax = 33 field-free line positions spaced by ∆s = 0.5mm.

To obtain a complete projection, this expression is evaluated for a set of values {sk}. This is then
repeated for a set of angles {θi}. We choose the step size ∆s = sk+1 − sk, the number of steps
kmax, and ∆θ to be the same as for the measurements shown in Sec. 5.
Fig. 5 presents the simulated imaging of two circular objects of equal density n0, having

diameters 1mm and 4mm. In panel (a) we notice two “bands”, one intense and one weak,
corresponding to the large and the small object, respectively. In the slice image, panel (b), the
reconstructed objects are compared with the position and size of the original objects (circles of
solid lines). We find that the maximum values of the reconstructed objects n′ to be more than a
factor 7 larger for the larger object (n′1 = 2.6) than of the smaller object (n′2 = 0.35), even though
the densities n0,l of the objects were the same. The full width at half maximum (FWHM) of the
reconstructed smaller object is approximately 3.2mm and approximately 4.2mm for the larger
one.

To simulate s-modulation, the MFE is expressed as the difference of two triangular functions,
displaced by ±δsmod from sk, respectively,

MFEmod
sim (s − sk) = Λ((s − sk − δsmod)/b) − Λ((s − sk + δsmod)/b) .

The displacement amplitude is chosen as δsmod = 0.175mm, as in the experiments below. The
projections in Fig. 6(a) depict two shifted bands, one of positive and one of negative signal, for
each object, instead of one as in the case without modulation. These two bands stem from the
edges of the sample. We can apply the reconstruction algorithm to this “raw” data and obtain
panel (b). Such a reconstruction does not depict the shape of the sample, since the back transform
“interprets” the two shifted bands as two separate objects. By integrating the projections along s,
we obtain panel (c). Backprojection yields panel (d). The reconstructed image is very similar
to the image in the case of no modulation, Fig. 5(b), which yields a stronger signal than with
modulation. This is not applicable to experimental measurements, where obtaining images with
modulation yields a stronger and clearer signal than without modulation by employing lock-in
detection and filtering of non-modulated signals. However, the reconstructions seen in Fig. 5(b)
and Fig. 6(d) show that measurements with modulation should provide the same information
after integration as measurements without modulation.



Research Article Vol. 11, No. 2 / 1 February 2020 / Biomedical Optics Express 542

Fig. 6. Simulation of imaging with s-modulation. (a) Projections S(0)s,sim(θ; sk). (b)

Backprojection. (c) s-integrated projection P(0)s,sim(θ; sk). (d) Backprojection obtained from
(c). Framed areas: the original objects. Projection parameters: 14 projection angles,
kmax = 33 field-free line positions per angle, step size ∆s = 0.5mm.

4. Experimental apparatus and procedures

4.1. The apparatus

A schematic of the experimental setup is presented in Fig. 7. To create a permanent magnetic field
with an approximate quadrupolar character and a well-defined field-free line, four neodymium
magnets (DXOXO-N52, KJ Magnetics, 2.54mmdia. × 2.54mm) were appropriately arranged
in an aluminum frame, with the magnets’ internal surfaces 40mm apart. The magnets have a
nominal field strength of 6.6 × 103 G at their surface. The magnetic field along the s axis was
measured using a magnetic field probe, which was placed vertically approximately in-between
the two vertical magnets and could be displaced along s (the s axis joins the centers of the two
horizontal magnets). Figure 8 shows the obtained magnetic field component Bs(s). The gradient
in the middle between the magnets was g = 155G/mm. We compare the measured Bs(s) with a
theoretical expression Bs, theo(s), taken from Refs. [31,32]. With this expression, the QP field
along the s axis is approximated as the sum of the magnetic fields of two opposing permanent
magnets (see Fig. 8,). On the s axis, the s-component (i.e. horizontal component) of the fields of
the two vertical magnets (z direction) can be neglected.
Two coils were placed around two opposing permanent magnets. They were driven with

currents in such a way that their fields add constructively in-between the magnets. Modulating
the currents then allows to shift the position of the field-free line, along a direction parallel to the
line itself. We denote the whole magnet assembly by QPA.
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Fig. 7. Schematic of the experimental setup. (a) View from the top. The top part of the
quadrupole magnet is removed in order to make the sample visible. (b) Side view cross
section.

Fig. 8. Measured and calculated magnetic flux density Bs(s) and Bs, theo(s) vs. the position
along the horizontal s axis. The s axis joins the centers of two opposing magnets. The
field-free line is at s = 0mm.

In our setup, we chose to move the total field (QP plus solenoidal), i.e. the QPA, along the
z and s directions by mechanical means, while keeping the object fixed. The field-free line
therefore always points along the ξ axis. The QPA was mounted under different orientations
depending on the type of measurement: the axis of the two solenoids pointed along the z axis
when z-modulation was used and along the s axis for s-modulation. Projection angles θi from 0◦
to 180◦ − ∆θ are achieved by rotating the sample around the laboratory-fixed axis z in steps ∆θ.
Test runs of the apparatus were often performed at a fixed angle θ and for a fixed slice zj, only
varying s. This yielded a single projection.

The field-free line was scanned over an s-range of 16mm with a step size of ∆s = 0.5mm
between measurement points. The coil current was modulated sinusoidally at 240Hz, with a
modulation amplitude of Imod = 5.45A. This resulted in a measured displacement amplitude
δzmod = δsmod = 0.175mm of the field-free line. The achievable spatial resolution will therefore
necessarily be worse than this value. The translation stage displaced the QPA downwards; thus
the z1 = 0mm plane is located above the FND solution’s upper surface (the FND containers are
not displaced during the measurement).
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Fig. 9. Two samples. Left: SampleA: Consists of two 4mm inner diameter tubes. Tube I
contains 20 µl FND solution (fill height ∼ 1.5mm), tube II 15 µl (fill height ∼ 1mm). Right:
SampleB: Inner diameter of tube I and II is 4mm and 1mm, respectively. Both tubes are
filled ∼ 2mm high.

Samples were placed on a rotary stage within the QPA. They were irradiated from opposite
sides with two 532 nm, 100mW laser diode modules (CW532-100, Roithner Lasertechnik).
Their beams were expanded with engineered diffusers (Thorlabs), so that the sample was
homogeneously illuminated. The fluorescence light emitted by the sample as well as the excitation
light scattered by the sample were focused on a highly sensitive detector (MPPC module C13366-
3050GA, Hamamatsu) with a lens. Two long-pass filters with a cut-on wavelength of 600 nm
and one notch filter with a center wavelength of 533 ± 2 nm were placed in front of the detector
to suppress the scattered excitation light. The detector signal was sent to a lock-in amplifier
(LIA), whose analog output was digitized by a standard data acquisition module. A Labview
program controlled the s-z stage positioning and the sample rotation θ, and recorded the data
from the lock-in amplifier for each setting. When not specified otherwise, the LIA was set to
an integration time of τ = 300ms and data was acquired for 1 s per measurement point after a
settling time of 1 s before acquisition.

For our experiments, with the particular samples used, the d.c. signal of the detector is typically
2 × 103 times larger than the maximum modulation signal.
The LIA signal data is denoted by S in the following. We emphasize that in contrast to the

quantity S(0) (and P(0)) introduced above, S (and P) are affected by absorption and scattering of
the fluorescence light. The relationship between S and the FND density is thus more complicated
than in the simplified discussion above. In addition, the experimental illumination density is not
homogeneous and is not separately determined.

4.2. The procedures

The samples consisted of FND solution in small containers, see Fig. 9. The containers were
plastic tubes glued to a glass plate. The FND solution used in this work (br100, FND Biotech)
contained 1mg FND per 1ml deionized water. According to the manufacturer, the nanodiamonds
had a diameter of ∼ 100 nm and were doped with ∼ 900NVC per single FND. SampleA consisted
of two tubes having an inner diameter of 4mm, liquid fill height ∼ 1.5mm (object I) and ∼ 1mm
(object II), and placed at a center-to-center distance of ∼ 1.5mm from each other. SampleB
consisted of two tubes of different inner diameter at a distance of 3mm from each other. One
tube had an inner diameter of 4mm (I), the other of 1mm (II), both tubes were filled ∼ 2mm
high. The 1mm tube was a glass tube with an outer diameter of 3mm.

When placing the samples inside the QPA while preparing for measurements, the objects’ long
side is aligned with the s axis (Fig. 9 depicts the objects long side). Hence, 1D projections and
the start angle of a set of projections should depict the full diameter of both tubes.
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Fig. 10. 1D imaging of sampleA. (a) Projections Sz(θ = θ1; sk, zj) at fixed angle, for
different planes zj. The values zj are given in the legend. The positive signals of planes
zj = 0.5mm-3mm represent the sample’s upper surfaces, the negative signals of zj =
4mm-6mm the lower surfaces. Acquisition parameters: z-modulation, kmax = 33 field-free
line positions, step size ∆s = 0.5mm (b, c) z-integrated projections Pz(θ = θ1; sk, zj).
(b) Individual projections. (c) Density plot of Pz.

5. Results

5.1. 1D imaging

First, 1D measurements of sampleA were performed, see Fig. 10. These are projection
measurements at a fixed angle θ = θ1, that were taken for different zj planes, spaced by
∆z = 0.5mm. With increasing value zj, the field-free lines shifted from the top to the bottom of
the sample.
As shown in Sec. 2.2.1, under simplified assumptions, the recorded signal is approximately

given by a weighted mean derivative of the FND density over the area that the field-free line
position is modulated. Since the present measurement was performed with z-modulation, only
signals from the upper and lower surfaces in z-direction of the sample can be observed. With the
particular settings of the LIA, the upper surfaces of the sample produced a positive signal (in
the interval zj = 0.5mm to 3mm) and the lower surfaces produced a negative signal (interval
zj = 4mm to 6mm). The projection for zj = 3.5mm (yellow in Fig. 10(a)) does not show any
signal, here the field-free line modulation range lies completely within the objects. Signals can
also be observed at the “middle” positions sk = 7 − 7.5mm, in-between the objects. The fact that
they are non-zero might be due to the finite spatial resolution.

To obtain the spatial distribution of the FND solution instead of their derivative, the projections
Sz were numerically integrated over the modulation direction z to yield Pz. The result is shown in
Fig. 10(b, c). High values correspond to a higher FND density in the integration (projection)
volume perpendicular to the s axis. In panel (a) we recognize a FWHM along the s axis of
approximately 3.6mm, compared with the diameter of the liquid volume of 4mm. In panels
(b, c) the FWHM along the z axis is approximately 2.5mm for the higher signal and 2mm for the
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Fig. 11. 2D image of two tubes filled with solution having different FND concentration
(sample C). (a) Projections Sz and (b) reconstructed derivative slice image. The black frames
are guides to the eye and represent the approximate size of the tubes. Acquisition parameters:
z-modulation, 12 projection angles, kmax = 33 field-free line positions per angle, step size
∆s = 0.5mm, integration time τ = 3 s, measurement time tmeas = 6 s per data point.

lower signal. However, the two tubes were filled approximately 1.5mm and 1mm high. The
discrepancy may be partially due to the employed step size ∆z. The resolution and the FWHM
are furthermore influenced by the signal stemming from the area surrounding the field-free line.
The FNDs in this area experience low magnetic field and therefore lower magnetic field effects,
which contributes to the detected signal, causing a broadening of the signal (as seen in Sec. 3).

5.2. 2D imaging of dissimilar objects

FNDs are generally considered to be biocompatible in concentrations below 1mg/ml (see
Sec. 1.1). This concentration was used in sample A above. For future imaging in biological
tissue with functionalized FNDs, much lower concentrations may occur, determined by the
number of functionalized FNDs binding to the targeted tissue. In order to study the concentration
dependence of the imaging we performed a 2D projection measurement of a sample C consisting
of two 4mm-diameter tubes, with one tube filled with 20 µl of a 1mg/ml solution (I), the other
with a mixture of 1 µl of the same FND solution and 19 µl deionized water (II). Thus the FND
concentration in II was 20 times smaller than in I.

The projections (Fig. 11(a)) show two bands of different strength, as expected. In the resulting
reconstruction (panel (b)), the maximum signal of the diluted solution is only smaller by a factor
2.7 compared to the signal of the undiluted solution, while the sum over the pixel values (within
black framed areas) differs by a factor of 4.8. These factors are much smaller than the dilution
ratio of 20, hence, the relationship between signal height and FND concentration is nonlinear.
Considering the variation of the projection signals of the two tubes (panel (a)), we observe that
the ratio of the maximum signals changes significantly between the first three angles and the
last three angles. This is caused by the positioning of the tubes with respect to the detector.
The detector was placed at an angle to the QPA (see Fig. 7), with the objects being closer to
the detector for higher values for sk. This could lead to shadowing effects, which are more
pronounced when the tube with the undiluted solution blocked the diluted solution from the
detectors field of view (see projection angle i = 4).

We explored the spatial resolution in the x-y plane using sample B, measured with z-modulation.
Projections were recorded for 20 projection angles from 0◦ to 180◦ − ∆θ, evenly spaced by ∆θ.
Note that fewer angle steps than steps in s direction were used, hence the spatial resolution will
not be equal to ∆s. Figure 12 shows the resulting 2D projection and reconstruction. The FWHM
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Fig. 12. 2D image of sample B, two tubes of different diameter and equal FND concentration,
4mm (I) and 1mm (II). (a) Projection data Sz and (b) reconstructed derivative slice image.
The black frames are guides to the eye and represent the approximate size of the tubes.
Acquisition parameters: z-modulation, 20 projection angles, kmax = 33 field-free line
positions per angle, step size ∆s = 0.5mm.

of the projections and reconstructed objects are ∼ 3.6mm and ∼ 2.4mm for the 4mm and 1mm
diameter tube respectively. The maximum values of the reconstructed object of the 1mm tube
(II’) is ∼ 3.8, significantly higher than for the 4mm tube (I’) ∼ 2.6. The image values summed
over area equal to the original object sizes (see Fig. 12(b) framed areas) yield 173 (I’) and 31 (II’).
One would expect a lower signal from the thinner object (II), as shown in the simulation of Sec. 3,
since the absolute number of FNDs within a circle of smaller diameter is lower than within a
larger circle. However, the higher signal of the thinner tube was seen over several repetitions of
the experiments, so other influences have to be suspected.

When considering the FWHM as an indicator for the spatial resolution, the reconstructions of
the 4mm object would indicate a resolution of 0.5mm, while the FWHM of the 1mm object
would indicate 1.5mm. Such a difference in estimated resolution was not expected for different
objects that were imaged simultaneously. Since the objects’ cross sections are circular, the
ξ-integrated FND density is lower on the sides of the objects along s, which results in a lower
signal. Hence, the FWHM of a projection through the center of a circular object should be smaller
than the actual object diameter, as can be seen in the values for the 4mm object. This implies that
the FWHM is not a good tool to estimate the resolution. However, due to the objects’ cylindrical
shape, this does not apply for the FWHM of the z dependence. Figure 10(b, c) depicts a FWHM
of 2.5mm and 2mm in z-direction, while the objects’ height was 1.5mm and 1mm respectively.
This broadening is comparable to the step size ∆z = 0.5mm and suggests a resolution better than
2mm.

5.3. Comparison of z- and s-modulation mode

Figure 13(a) depicts 1D projections Ss of sample B, obtained using modulation in s-direction at
steps of ∆z = 0.5mm. As described earlier, the projections now emphasize the lateral (in the x-y
plane) edges of the sample. In panel (a) this appears as a “dispersive” behavior as function of s.
Panel (b) shows the projections integrated along the s direction, Ps. We notice a slope in the
baselines of these Ps. It is in part caused by a small offset in the projections Ss (panel (a)) and
in part by different absolute values of the maximum and minimum occurring at the edges. A
possible origin of the latter effect is the finite step size which leads to an imperfect measurement
of Ss. Therefore, for the following analysis we correct this effect numerically: for each angle and
plane, the sloping baseline is approximated by a line joining the first and last projection data point
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Fig. 13. s-modulation mode imaging of sample B. (a) Projections Ss(θ = θ1; sk, zj) taken in
different planes zj, spaced by ∆z = 0.5mm. (b) s-integrated projections Ps(θ = θ1; sk, zj).
(c) Ps after correction for sloping baselines. Acquisition parameters: kmax = 33 field-free
line positions with step size ∆s = 0.5mm.

Fig. 14. 2D image of sampleB, using the s-modulation mode. (a) Projections Ss of a
particular plane zj = 3mm. (b) s-integrated projections Ps. (c) Ps after correction for
sloping baselines. (d) Reconstructed integrated slice image of panel (c). The black frames
are guides to the eye and represent the approximate size of the tubes. Acquisition parameters:
14 projection angles, kmax = 33 field-free line positions per angle, step size ∆s = 0.5mm.

and then this value is subtracted from the respective projection. The result of the corrections is
shown in panel (c).
Figure 14 shows the 2D projection Ss for the plane zj = 3mm performed with s-modulation

(panel (a)), the s-integrated projection, Ps (panel (b)) and Ps after baseline correction (panel
(c)). Compared to z-modulation, the s-modulation method shows more artefacts caused by the
baseline, which can still be seen after its subtraction (Fig. 14(d)). However, if the given task is
imaging a single plane, s-modulation with subsequent integration appears favorable, since it



Research Article Vol. 11, No. 2 / 1 February 2020 / Biomedical Optics Express 549

produces a more complete image; specifically, it delineates the objects better, since it is sensitive
to edges within the chosen plane. This is not possible with z-modulation. As a result, Fig. 14(d)
depicts roughly a cross section of the sample, while Fig. 12 shows the sample’s upper surfaces.
Another example is the z-modulation projection for zj = 3.5mm, the yellow line in Fig. 10(a). It
is zero, because this slice falls in the middle of the sample. Hence, on its own, this projection
does not yield any information. With s-modulation, however, a nonzero signal is obtained, the
yellow line in Fig. 13(a), and by integration along s a cut through the 2D slice image is obtained,
the yellow line in panel (b).
The simulations shown in Sec. 3 yield different results for the image values of objects of

different diameter compared to the measurements shown here for s- and z-modulation, respectively.
In simulations with and without modulation the wider object always yields a stronger signal,
since a wider object contains a higher total number of FNDs along the ξ axis. We notice that
the FWHM of the reconstruction of both the 1mm and 4mm object is slightly broader in the
simulations than in the experiments; this difference might stem from the simple approximation
for the MFE.

5.4. 3D imaging

We obtained 3D images of sampleA by performing 2D z-modulation imaging in a set of planes
{zj}. We imaged 8 planes, spaced by ∆z = 1mm, whose projection data sets Sz are shown in
Fig. 15. This measurement was performed immediately after the 1D measurement described in
Sec. 5.1, therefore the zj planes match and the first angle θ1 is the same. The projections’ main

Fig. 15. Projections Sz of sampleA taken in different planes zj. Acquisition parameters:
z-modulation, 14 projection angles, kmax = 33 field-free line positions per angle, step size
∆s = 0.5mm, 8 planes zj spaced by ∆z = 1mm.
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Fig. 16. 3D image of sampleA obtained by stacking the 2D backprojections obtained
for several planes. (a) Stacked set of the backprojections of Sz. (b) Stacked set of the
backprojections of Pz.

features are as expected, with two bands (I, II), having different maximum value. Note that the
specific band-crossing angle (here i = 7 − 9) depends on the initial orientation θ1, while the
angles at which the maximum values are attained depend on the location of the detector. The
stronger signal of band I originates from the larger object. The projections are not symmetric
with respect to the line sk = 8mm, because the sample was not placed precisely in the middle
of the scanned s-interval. We computed the backprojections of the Sz for each plane zj and
stacked them to form a 3D derivative image, see Fig. 16(a). More artefacts and distortions occur
in the slice images, when the signal in a projection measurement occurs near the edges of the
reconstructed area. This might cause the elliptical shape of the reconstructed object I’ (Fig. 16),
whereas the original object had a circular cross section.

The projections Sz were integrated over z to obtain Pz. As the final step, the backprojection of
the Pz for each plane zj was computed and stacked to form a 3D image, see Fig. 16(b). Note
that the sample appears in only four out of the eight planes measured, and clearly only in two
planes (spaced 1mm apart). The comparison of panels (a) and (b) in Fig. 16 clearly evidences
the difference between Sz and Pz: Sz and its backprojection emphasize the borders of the FND
distribution along the modulation direction z, whereas the backprojection of Pz shows a quantity
more directly related to the FND distribution itself. The FWHMs of the projections Sz, Pz along
the s direction and of the slice images, along the x and y direction range from 3.6mm to 4.5mm,
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depending on the z plane. These values are comparable to the diameter of the two objects in
sampleA, 4mm.

6. Discussion and conclusions

Fundamentally, the discussed technique of modulation MFI probes the gradient of the particle
density. We have shown that we can probe the gradient both in axial and in radial direction with
s-modulation and z-modulation, respectively. This feature can be of interest for some applications.
We obtained approximately the particle density by an intermediate step of numerical integration of
the data. 3D imaging of different phantoms having different feature size and FND concentration
was performed, for the first time. Although the tube samples that were used are not yet a realistic
model for future medical applications, our use of FND solution rather than dried FNDs, is already
a step in this direction. It was possible to obtain projection sets having 33 × 8 × 14 data points,
each covering a “volume” of 0.5mm × 13◦ × 1mm, and 3D images having 36 × 36 × 8 voxels,
each voxel corresponding to a column of approximate volume (0.33mm)2 × 1mm. The required
imaging time was 20min per plane, and 157min in total. The imaging time of a 2D-measurement
with 20 angles, 16mm scan range with 0.5mm step size was 28minutes. A comparison of this
imaging duration with previous work was not possible, since no imaging time information was
reported [1–3].
The FWHM in x and y of projections of the 4mm-diameter tubes corresponded to the object

size, both for s- and z-modulation. This suggested a resolution of 0.5mm. However, the
reconstruction of a 1mm-diameter tube exhibited broadening and suggested a lower resolution
of 1 − 1.5mm. These values should be compared with the naive expectation δρ ' 2.5mm. We
also found that the imaging of objects with circular cross section complicates understanding of
the resolution of the setup. Furthermore, the measurement with diluted and undiluted solution
showed that the dependence of the signal on the initial fluorescence intensity is complicated.
Clearly absorption and scattering of the fluorescence light, as well as inhomogeneous illumination
are important effects. These issues will be studied in future work.

6.1. Perspectives

There are several directions intowhich thiswork can evolve. A first extension is the implementation
of the two modulation modes in an interleaved fashion (after an appropriate extension of the
hardware): at every setting (sk, θi, zj) of the field-free line, both s- and z-modulation are performed
in immediate sequence. This increases the total measurement time, but by less than a factor two,
since the time overhead for scanning the field-free line across the object is spent only once.
Secondly, the objects imaged here were relatively simple tube samples. Therefore, more

complex structures, embedded in scattering media, should be imaged. 3D phantoms could be
produced by means of 3D printing.
Thirdly, the artefacts caused by inhomogeneous laser illumination and small detector area

should be reduced, which could be done by using distributed light sources and a set of distributed
detectors, or by using light guides for illuminating the sample frommany directions simultaneously
and for gathering the fluorescence light from multiple directions. Since more fluorescence light
could then be collected, this would also allow faster imaging or imaging objects with lower FND
concentration in similar time.
Better spatial resolution could in principle be achieved with higher magnetic field gradients.

Experiments will need to demonstrate this. Further experiments will have to study the influence
of scattering media on the imaging performance. Here, an advanced simulation tool for 3D MFI
in biological tissue might be helpful for simulating different imaging modalities and experimental
configurations before implementing them.

Finally, the most challenging extension is imaging of significantly larger volumes. Whole-body
imaging of a 50 cm diameter human body requires a quadrupole magnet with a 1m bore. This
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twice larger value is needed for scanning the field-free line across the whole body. If the same
gradient strength used here (g ' 100G/mm) is to be maintained, the magnetic field at the magnet
poles will be of the order of 10 T. Although such values are not impossible, the corresponding
magnet will certainly be complex and costly. Possibly, defects other than NVC may exhibit a
more favorable magnetic field dependence, thereby reducing the requirements on the magnet.
For such large bodies, the MFI approach has potential advantages compared to ODESR imaging.
In the latter modality, the larger the volume to image, the higher the power requirement on the
microwave source. Furthermore, inhomogeneous distribution of microwave power in the body
may occur, leading to image distortions. However, the issue of inhomogeneous irradiation by the
laser light is present in both ODESR imaging and MFI imaging and will have to be addressed as
mentioned.
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